15(S)-hydroxyeicosatetraenoic acid induces angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling.

نویسندگان

  • Baolin Zhang
  • Huiqing Cao
  • Gadiparthi N Rao
چکیده

To determine whether the lipoxygenase metabolites of arachidonic acid, 5(S)-, 12(S)-, and 15(S)-hydroxyeicosatetraenoic acids [5(S)-HETE, 12(S)-HETE, and 15(S)-HETE, respectively] are angiogenic, we have studied their effects on human dermal microvascular endothelial cell (HDMVEC) tube formation and migration. All three HETEs stimulated HDMVEC tube formation and migration. Because 15(S)-HETE was found to be more potent than 5(S)-HETE and 12(S)-HETE in HDMVEC tube formation, we next focused on elucidation of the signaling mechanisms underlying its angiogenic activity. 15(S)-HETE stimulated Akt and S6K1 phosphorylation in HDMVEC in a time-dependent manner. Wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3K), blocked both Akt and S6K1 phosphorylation, whereas rapamycin, a specific inhibitor of Akt downstream effector, mammalian target of rapamycin (mTOR), suppressed only S6K1 phosphorylation induced by 15(S)-HETE suggesting that this eicosanoid activates the PI3K-Akt-mTOR-S6K1 signaling in HDMVEC. Wortmannin, LY294002, and rapamycin also inhibited 15(S)-HETE-induced HDMVEC tube formation and migration. In addition, all three HETEs stimulated angiogenesis as measured by in vivo Matrigel plug assay with 15(S)-HETE being more potent. Pharmacologic inhibition of PI3K-Akt-mTOR-S6K1 signaling completely suppressed 15(S)-HETE-induced in vivo angiogenesis. Consistent with these observations, adenoviral-mediated expression of dominant-negative Akt also blocked 15(S)-HETE-induced HDMVEC tube formation and migration and in vivo angiogenesis. Together, these results show for the first time that 15(S)-HETE stimulates angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Thrombin induces expression of FGF-2 via activation of PI3K-Akt-Fra-1 signaling axis leading to DNA synthesis and motility in vascular smooth muscle cells.

To understand the mechanisms by which thrombin induces vascular smooth muscle cell (VSMC) DNA synthesis and motility, we have studied the role of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-S6K1 signaling. Thrombin stimulated the phosphorylation of Akt and S6K1 in VSMC in a sustained manner. Blockade of PI3K-Akt-mTOR-S6K1 signaling by LY-294002, and rapamycin s...

متن کامل

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

S6K1 and 4E-BP1 Are Independent Regulated and Control Cellular Growth in Bladder Cancer

Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful...

متن کامل

Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice

Objective(s): Ulcerative colitis (UC) is a kind of complex immune disease, and a major cause of destruction of intestinal barrier and oxidative stress in this field. In this paper, glutamine (Gln) was believed to offer protection against oxidative stress injury in colitis mice.Materials and Methods: Thirty mice were randomly assigned int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 65 16  شماره 

صفحات  -

تاریخ انتشار 2005